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Abstract—Probabilistic maximum coverage (PMC) is an im-
portant framework that can model many network applications,
including mobile crowdsensing, content delivery, and task repli-
cation. In PMC, an operator chooses nodes in a graph that
can probabilistically cover other nodes, aiming to maximize the
total rewards from the covered nodes. To tackle the challenge of
unknown parameters in network environments, PMC are studied
under the online learning context, i.e., the PMC bandit. However,
existing PMC bandits lack context-awareness and fail to exploit
valuable contextual information, limiting their efficiency and
adaptability in dynamic environments. To address this limitation,
we propose a novel context-aware PMC bandit model (C-PMC).
C-PMC employs a linear structure to model the mean outcome
of each arm, effectively incorporating contextual information
and enhancing its applicability to large-scale network systems.
Then we design a variance-adaptive contextual combinatorial
upper confidence bound algorithm (VAC2UCB), which utilizes
second-order statistics, specifically variance, to re-weight feedback
data and estimate unknown parameters. Our theoretical analysis
shows that C-PMC achieves a regret of Õ(d

p
|V|T ), independent

of the number of edges |E| and action size K. Finally, we conduct
experiments on synthetic and real-world datasets, showing the
superior performance of VAC2UCB in context-aware mobile
crowdsensing and user-targeted content delivery applications.

I. INTRODUCTION

The probabilistic maximum coverage (PMC) problem is a
simple yet powerful model which can be applied to many
network scenarios, including network content delivery [1],
[2], mobile crowdsensing [3]–[5], and vehicular network task
replication [6], [7]. PMC is represented by a bipartite graph
G(U ,V, E) as input, where U are the nodes to be selected, V
are the nodes to be covered, and E are the edges between U

and V . Each edge (u, v) in E is associated with a probability
p(u, v), while each target node v in V is assigned a weight
w(v). The probability p(u, v) indicates the likelihood that node
u from U can cover a target node v in V independently, and
the weight w(v) corresponds to the reward contributed by a
successfully covered node v. The objective of the decision
maker is to select at most K nodes in U to maximize the
cumulative rewards obtained from the covered nodes in V .

In content delivery networks (CDN), as depicted in Fig. 1,
the PMC problem can be employed to strategically choose a
subset of servers to enhance user experience. In this scenario,

⇤Yuedong Xu is the corresponding author. This work was supported in part
by the Natural Science Foundation of China under Grant Grant 62072117, the
Shanghai Natural Science Foundation under the Grant 22ZR1407000.

Fig. 1: C-PMC for content delivery: the decision maker chooses
servers based on contextual information, successfully covers
users (check marks) via edges (solid lines), and gains rewards.

servers can cache contents (e.g., pictures, videos), allowing end
users to access them swiftly from the nearby servers [1]. The
PMC model can cover this application by using U to denote
the set of candidate servers responsible for content delivery and
V to represent the set of users who consumes the contents. The
probability p(u, v) for each edge (u, v) captures the likelihood
of successfully delivering content from server u to user v in a
timely and high-quality manner, and the weight w(v) represents
the probability that user v ultimately consumes the content.
The objective of the PMC problem in this context is to select
some server nodes in U , so as to maximize the number of users
who successfully consume the content, thereby optimizing the
user experience in the CDN.

For the PMC problem, it is crucial to set accurate parametric
values (e.g., edge probabilities, node weights) to make optimal
decisions. Previous studies have assumed that these parameters
are known in advance [8]–[10]. However, in practical network
applications, these parameters are unknown and must be
estimated on the fly. This motivates the study of PMC in
the online learning context, i.e., PMC bandit [2].

In PMC bandit, Chen et al. [2] associate each edge (u, v)
and node v with an arm, where each arm has an unknown
probability p(u, v) or weight w(v) to be learned in T consecu-
tive decision rounds. In each round t 2 [T ], the learning agent
selects a set of arms as action, and the outcomes of these
selected arms are observed as feedback. This feedback, known
as semi-bandit feedback, allows the agents to gradually learn the
unknown parameters and optimize their decisions to maximize
their rewards. The agent’s objective is to maximize the expected
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total rewards, or equivalently, minimize the expected regret,
which quantifies the difference between the total expected
rewards obtained by always playing the best action and playing
according to the agent’s own policy [11].

Recently, Liu et al. [12] propose a new variant of PMC bandit,
called PMC-G bandit, which extends the deterministic semi-
bandit feedback to general probabilistic feedback for a wider
range of applications. For PMC-G bandit, a novel variance-
adaptive algorithm, VACUCB, is proposed, which achieves
a regret of Õ(

p
|E||V|T ) regret (where Õ hides logarithmic

factors), improving upon the CUCB algorithm from Chen et
al. [2] by a factor of O(K).

Despite the success of PMC-G and VACUCB in handling
general feedback and achieving improved regrets, there still
exist limitations that can be significantly improved. Firstly,
PMC-G does not utilize contextual information (e.g., geospa-
tial information, network states, hardware parameters, user
demographic, human activities, etc.), which are often present
in network systems and can serve as valuable features to
quantify network performances and user behaviors [13]. With-
out leveraging the contextual information, PMC-G needs to
independently learn all O(|E|) success probabilities p(u, v)
(and weights w(v)), leading to regret that grows with an
unsatisfying O(

p
|E|) factor. This is highly inefficient and

non-scalable for applications like CDN with thousands of
candidate servers U and hundreds of thousands of users V .
Moreover, PMC-G cannot adapt to dynamic environments,
where they assume p(u, v) (and w(v)) are fixed for all T

rounds. In realistic network applications, however, they may
change over time. Take CDN as an example, different users U

may arrive randomly at different times with varying preferences
and locations, causing success probability p(u, v) and weights
w(v) change dynamically. For the above setting that violates
PMC-G’s assumption, both its VACUCB algorithm and its
performance guarantee will no longer be meaningful.

A. Our Contributions

To address the aforementioned limitations, this paper makes
four key contributions as follows.
(1) Model Formulation: We propose a new variant of PMC
bandit called the context-aware PMC bandit (C-PMC), which
incorporates contextual information to enhance the PMC-G
model. For each arm, we use a general time-varying feature
map to leverage contextual information at each round t. We
adopt a simple yet effective linear structure to model the mean
outcome of each arm, where the mean is represented as a
linear product of a d-dimensional feature and an unknown
d-dimensional parameter. This formulation enables C-PMC
to retain context awareness, scalability, and adaptability to
time-varying environments, while benefiting from PMC-G’s
rich feedback models. We demonstrate the effectiveness of C-
PMC by applying it to two representative network applications:
context-aware mobile crowdsensing and user-targeted content
delivery, each incorporating various contextual information.
(2) Algorithm Design: We propose a novel variance-adaptive
contextual combinatorial upper confidence bound algorithm

(VAC2UCB) for C-PMC. Unlike traditional contextual bandit
algorithms, VAC2UCB leverages second-order statistics, specif-
ically variance, as weights to re-weight each feedback data
and construct a variance-adaptive least-squared estimator for
learning the unknown parameters. The main technical difficulty
is that the variance itself is unknown. To handle this challenge,
we use an optimistic variance as a proxy for the true variance,
which depends on our estimator and the uncertainty level of
each arm. By combining these techniques, we achieve regret
bounds that do not depend on the number of edges |E| and
the action size K.
(3) Theoretical Analysis: We prove that our algorithm achieves
a regret bound of Õ(d

p
|V|T ), matching the lower bound

up to a factor of Õ(
p
d), where d is typically small in

real applications (around 20). Importantly, our regret bound
is independent of the number of edges |E| and the action
size K, improving upon the state-of-the-art VACUCB and
C3UCB algorithms by factors of Õ(

p
|E|/d) and Õ(

p
K),

respectively. Our analysis tackles several technical challenges,
such as bounding the uncertainty of our estimator in the face
of unknown variance with time-varying contextual information,
and bounding the total regret which is highly nonlinear with
respect to estimation error and observation probability. The key
contributions of our analysis are a tight concentration bound
for our new estimator and a sensitivity lemma that relates the
estimation error to the final regret, which may of independent
interest for other related works.
(4) Performance Evaluation: We conduct comprehensive
experiments on two representative applications mentioned
earlier, using synthetic and real-world datasets, to validate
our theoretical results. The experimental results demonstrate
that our proposed algorithms achieve at least 11% and 77%
less regrets compared to benchmark algorithms.

B. Related Works

The field of online learning problems under the multi-armed
bandit (MAB) model has been extensively studied. The MAB
model was first introduced by the seminal work [14] and has
been expanded upon by many other researchers (cf. [11], [15],
[16]). Linear contextual bandit is a notable extension that
incorporates contextual information and assumes an effective
linear structure to improve scalability [17]–[19]. Our work is
inspired by the consideration of contextual information in these
studies, however, C-PMC allows a combination of arms to be
pulled in each round, which requires special treatment to handle
the combinatorial explosion of the exploration space. To handle
the combinatorial structure, contextual combinatorial MAB
is proposed by Qin et al. [20] under semi-bandit feedback,
then studied by Li et al. [21] under cascading feedback.
However, these two works only achieve sub-optimal regret
with an additional O(K) factor, as they lack variance-adaptive
algorithms and treat each feedback data equally. In contrast,
our work leverages variance-adaptive algorithms, leading to
superior performance in both theory and experiments, as shown
in Section IV and Section V.
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The Probabilistic Maximum Coverage (PMC) problem
is first presented in [8], and finds applications in various
computer science domains, particularly in the field of network
optimization. Alongside the three applications discussed in this
paper, PMC has relevance in wireless sensor placement [22]
and social network advertising [23], [24]. The online learning
variant of the PMC problem, known as PMC bandit, is initially
proposed by Chen et al. [25] and has since been studied by Chen
et al. [2], Merlis et al. [26], and other researchers. Recently, Liu
et al. [12] proposes a PMC-G model, which is the closest to
our work. PMC-G generalizes PMC with semi-bandit feedback
for applications involving general probabilistic feedback. In
contrast to non-contextual PMC-G, our work is context-aware,
more scalable, and more adaptive to time-varying environments
by leveraging the valuable contextual information.

II. SYSTEM MODEL

In this paper, we use [n] to represent set {1, ..., n} for
n 2 Z+. We use boldface lowercase letters and boldface CAPI-
TALIZED letters for column vectors and matrices, respectively.
kxkp denotes the `p norm of vector x. We use ei to denote the
one-hot vector with 1 at the i-th entry and 0 elsewhere. For any
event E , we use I{E} to denote the indicator function, where
I{E} = 1 if E holds and I{E} = 0 otherwise. For any two
vectors x,y 2 Rd, we use x�y 2 Rd to denote element wise
product (xiyi)i2[d]. For any symmetric positive semi-definite
(PSD) matrix M (i.e., x>Mx � 0, 8x), kxkM =

p

x>Mx
denotes the matrix norm of x regarding matrix M .

The system model of context-aware PMC bandit (C-PMC),
can be represented by a tuple (G, [m],S, C,�,⇥, Dobs, R) as
follows. G = (U ,V, E) denotes the underlying bipartite graph,
where U is the set of candidate nodes, V is the target nodes to
be covered by U , and E is the set of edges connecting U and
V ; [m] = {1, 2, ...,m} denotes the set of base arms (or arms),
where each base arm is associated with an unknown parameter
that needs to be learned. Depending on different application
scenarios in Section V, the base arms for C-PMC could refer
to the edge set E , or the edge and target node sets E [V . Thus,
we use [m] to cover both cases; S represents the set of eligible
actions, where S 2 S denotes an action. Similar to [m], S is
application-dependent and can be either a collection of subsets
of [m], or subsets of U ; C denotes the set of possible contexts;
� denotes the set of possible feature maps, where any feature
map � 2 � is a function C ⇥ [m] ! Rd, and �(c, i) maps
an arm i to a d-dimensional feature vector given context c.
Here, we assume feature vectors are normalized, such that
k�(c, i)k2  1. Dobs is the observation function used to model
the general feedback, similar to that of [12], and R is the
reward function, whose definition will be provided shortly.

In C-PMC, a learning game is played between a learning
agent and the unknown environment in a sequential manner,
according to the following procedure. Before the game starts,
the environment chooses a parameter ✓⇤

2 ⇥ unknown to the
agent (without loss of generality, we assume k✓⇤

k2  1). At
the beginning of round t = 1, 2, ..., T , the agent receives a
context ct 2 C and a feature map �t 2 �. Note that ct,�t

could be time-varying, or stochastically generated. Then for
each arm i, it is associated with a feature vector �t(ct, i) 2 Rd

which encodes the contextual information ct to a d-dimensional
vector.1 Based on the feature vectors �t(i), the agent selects
an action St 2 S. Subsequently, the environment generates
Bernoulli outcomes Xt = (Xt,1, ...Xt,m) 2 {0, 1}m for base
arms, with mean outcome E[Xt,i|Ht] = h✓⇤

,�t(i)i. Here,
Ht denotes the history before the agent’s selection of action
St, which will be defined shortly. Note that the outcomes Xt

are assumed to be conditional independent across arms given
history Ht, consistent with prior works [20], [21], [27].

When the action St is taken, the agent will receive a non-
negative reward R(St,Xt). For C-PMC, the reward at round
t is the total rewards obtained from the covered nodes,

R(St,Xt) =
P

v2V Xt,v · I{9u 2 St s.t. Xt,(u,v) = 1}. (1)

Essentially, for an edge (u, v) 2 E , Xt,(u,v) = 1 indicates that
the target node v 2 V is covered when u 2 U is selected, and
for v 2 V , Xt,v = 1 means that covering the target node v

yields one unit of reward. Let µt , (h✓⇤
,�t(i)i)i2[m] denote

the mean vector of base arms’ outcomes at round t, which are
unknown to the agent. Under the assumption of independence,
the expected reward r(S;µt) , E[R(S,Xt)] is

r(S;µt) =
P

v2V µt,v

�
1�

Q
u2S(1� µt,(u,v))

�
. (2)

It is worth noting that this expected reward function is
highly non-linear with respect to µt, and finding the optimal
solution S

⇤
t = argmaxS2S r(S;µt) is generally NP-hard [8].

Fortunately, ultilizing submodular set function maximization
technique, one can achieve ↵ = (1 � 1/e)-approximate
solutions [8].

At the end of round t, the agent can observe some of the
arm outcomes as feedback, which is critical for improving
future decisions. Consistent with [12], we assume that the
outcomes of base arms in a random set ⌧t ⇠ Dobs(St,Xt)
are observed, meaning that the outcomes of arms in ⌧t, i.e.
(Xt)t2⌧t are revealed as the feedback to the agent. Here the
function Dobs is used to model the general feedback and
is referred as the general feedback function. For notational
convenience, we define observation probability p

µ,Dobs,S
i as

the probability that base arm i is observed when the action
is S, the mean vector is µ, and the feedback function is
Dobs. Since Dobs is fixed in a given application, we ignore
it in the notation for simplicity, and use p

µ,S
i henceforth. To

this end, we can give the formal definition of the history
Ht = (cs,�s, Ss, ⌧s, (Xs,i)i2⌧s)s<t

S
(ct,�t), which encom-

passes all information prior to round t and includes the
contextual information ct and �t at round t. For convenience,
we define M , {h✓,�(c, i)ii2[m] : c 2 C,� 2 �,✓ 2 ⇥} as
the set of all possible mean vectors generated by C, � and ⇥.

It is important to emphasize that the introduction of Dobs
enhances the modeling capabilities of previous PMC bandit [25].
It not only models deterministic semi-bandit feedback but

1For notational simplicity, we will use �t(i) to denote (time-varying) feature
vector �t(ct, i) at round t.
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Algorithm 1 VAC2UCB: Variance-Adaptive Contextual Com-
binatorial Upper Confidence Bound Algorithm for C-PMC

1: Input: Base arms [m], dimension d, regularizer �, failure
probability �, ↵-approximation oracle ORACLE.

2: Initialize: set gram matrix G0, regressand b0, optimistic
variance V̄0 to 0.

3: for t = 1, ..., T do
4: Gt = �I +

P
s<t

P
i2⌧s

V̄
�1
s,i �s(i)�s(i)>.

5: bt =
P

s<t

P
i2⌧s

V̄
�1
s,i �s(i)Xs,i. .Compute statistics

using historical data re-weighted by optimistic variance

6: ✓̂t = G�1
t bt. .Parameter estimation

7: for i 2 [m] do
8: µ̄t,i = h�t(i), ✓̂ti+ 2�k�t(i)kG�1

t
. .UCB value.

9:
¯
µt,i = h�t(i), ✓̂ti � 2�k�t(i)kG�1

t
. .LCB value.

10: end for
11: St = ORACLE(µ̄t,1, ..., µ̄t,m). .Oracle using UCBs.

12: Play St and observe arms ⌧t with outcomes (Xt,i)i2⌧t .
13: V̄t,i = maxµ2[

¯
µt,i,µ̄t,i] µ(1�µ) for i 2 [m]. .Compute

optimistic variance.

14: end for

also allows for probabilistic feedback when ⌧t is randomly
determined. Furthermore, it can handle partial feedback that
depends on specific stopping criteria [21]. It is also worth
noting that C-PMC generalizes PMC-G by allowing a probably
time-varying feature map �t. Specifically, if we set ✓⇤ =
(µ1, ..., µm) and fix �t(i) = ei, where ei 2 Rm denotes the
one-hot vector with 1 at the i-th entry and 0 elsewhere, we
can easily reproduce the PMC-G setting described in [12].

The goal of C-PMC is to accumulate as much reward as
possible over T rounds by learning the underlying parameter
✓⇤. The performance of an online learning algorithm A is
evaluated based on its regret, defined as the difference between
the expected cumulative reward obtained by always playing
the best action S

⇤
t , argmaxS2S r(S;µt) at each round t,

and the expected cumulative reward by playing actions chosen
by algorithm A. As mentioned before, it could be NP-hard
to compute the exact S⇤

t even when µt is known, so similar
to [21], [28]–[30], we assume that the algorithm A has access
to an offline ↵-approximation oracle. This oracle takes a mean
vector µ as input and outputs an action S such that r(S;µ) �
↵ · r(S⇤;µ). Given the ↵-approximation oracle, the T -round
↵-approximate regret is defined as

Reg(T ) = E
hPT

t=1 (↵ · r(S⇤
t ;µt)� r(St;µt))

i
, (3)

where the expectation is taken over the randomness of outcomes
X1, ...,XT , the observation ⌧1, ..., ⌧T , and algorithm A itself.

III. ALGORITHM DESIGN

In this section, we introduce the Variance-Adaptive
Contextual Combinatorial Upper Confidence Bound Algorithm
for the C-PMC problem (VAC2UCB), provided in Algorithm 1.
Different from the CUCB algorithm [28] that neglects the
contextual information and directly estimates the mean µt,i for
each arm, contextual bandit algorithms typically estimate the
underlying parameter ✓⇤, which allows for efficient learning

and computation for large-scale applications [19]. Specifically,
✓⇤ is estimated by solving the following `2-regularized least-
square problem with regularization parameter � > 0:

✓̂t = argmin
✓2⇥

X

s<t

X

i2⌧s

(h✓,�s(i)i �Xs,i)
2 + �k✓k22. (4)

The closed form solution to this problem is precisely
given by ✓̂t = G�1

t bt, where the Gram matrix
Gt =

P
s<t

P
i2⌧s

�s(i)�s(i)> and the b-vector bt =P
s<t

P
i2⌧s

�s(i)Xs,i. However, directly using this parameter
estimation will yield suboptimal regret Õ(d

p
KT ) with an

additional factor of O(
p
K) [21], where K is the maximum

number of nodes in U that could be selected. The main issue
lies in the lack of variance adaptivity and the equal treatment of
each data point. To address this limitation, VAC2UCB leverages
the second-order statistics, specifically the variance, to re-
weight each data point and obtain a more accurate estimator.
To gain the intuition, we begin by assuming the variance
Vs,i = Var[Xs,i] for each base arm i at round s is known
in advance. In this case, VAC2UCB employs the weighted

least-squared estimation to learn the parameter ✓⇤:

✓̂t = argmin
✓2⇥

X

s<t

X

i2⌧s

(h✓,�s(i)i �Xs,i)
2
/Vs,i + �k✓k22, (5)

where the first term is inversely weighted by the true variance
Vs,i. The closed-form solution of this estimator is ✓̂t = G�1

t bt
where the Gram matrix Gt =

P
s<t

P
i2⌧s

V
�1
s,i �s(i)�s(i)>

and the b-vector bt =
P

s<t

P
i2⌧s

V
�1
s,i �s(i)Xs,i. Notably

the form of the solution is similar to that in VAC2UCB, but
the weights used for updating Gt and bt differ (lines 4-5).

The intuition behind using the inverse of Vs,i to re-weight
the feedback data is as follows: when the variance is smaller,
the observation (�t(i), Xt,i) is more accurate, making this data
more important for the agent to learn unknown ✓⇤. By doing
so, VAC2UCB achieves a faster learning speed compared to
the suboptimal approach that treats each data point equally (Li
et al., 2016).

For our C-PMC setting, a new challenge arises since the
variance Vs,i = µs,i(1�µs,i) is not known a priori. To address
this challenge, we construct an optimistic estimation V̄s,i (line
13) to replace the true variance Vs,i in Equation (5). Indeed,
we construct V̄t,i by solving the optimal value for the problem
maxµ2[

¯
µt,i,µ̄t,i] µ(1�µ), where µ̄t,i and

¯
µt,i are UCB and LCB

values to be introduced later. Notice that with high probability
the true µt,i lies within LCB and UCB values and as they
become more accurate, the optimistic variance Vt,i is also
approaching the true variance Vt,i.

In order to theoretically guarantee ✓̂t is a good estimator,
we prove a lemma (Lemma 1) to guarantee the concentration
bound of ✓t in the presence of unknown variance. The details
will be presented in a later section. Building on this lemma,
we construct an optimistic estimation, referred to as upper
confidence bound (UCB) for each arm’s mean µ̄t,i (line 8). The
UCB values is computed using the empirical mean h�t(i), ✓̂ti
and a confidence interval 2�k�t(i)kG�1

t
along the direction

�t(i). Similarly, we construct
¯
µt,i to provide lower bound
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(LCB) of µt,i (line 9). The size of the confidence interval
influences the exploration for each arm, where larger intervals
provide more incentive for the agent to explore arm i, thereby
reducing uncertainty in the direction �t(i). As a convention,
we clip µ̄t,i,

¯
µt,i into [0, 1] if they are above 1 or below 0.

Once the UCB values µ̄t are computed, the agent selects
action St using an offline oracle with µ̄t as input (line 11).
After the agent plays St, the base arms in ⌧t are revealed, and
the agent receives (Xt,i)i2⌧t as feedback. These observations
(reweighted by optimistic variance V̄t,i) are used to update Gt

and bt to improve decisions in future rounds (lines 4-5).

IV. THEORETICAL ANALYSIS

Here, we present our main theoretical result and analysis.

A. Main Result

Theorem 1. For a C-PMC problem instance

(G, [m],S, C,�,⇥, Dobs, R), the ↵-approximate regret

of VAC
2
UCB (Algorithm 1) is upper bounded by Õ(d

p
|V|T ),

where Õ hides polylogarithmic factors regarding T .

Discussions. To state the regret bound, we first de-
note the minimum observation probability as pmin =
mini2[m],µ2M,S2S,pµ,S

i >0 p
µ,S
i . Looking at Theorem 1, the

regret does not have any dependence on action size K, number
of base arms E , and the triggering probability pmin. For C-PMC
bandit, [21] is the closest work to ours, and following their
C3-UCB algorithm can only give Õ(d

p
K|V|T/pmin). Our

regret is strictly better than theirs by a factor of Õ(
p
K/pmin).

When the contexts remain unchanged at each round, Liu et al.
[12] also propose a variance-adaptive algorithm VACUCB by
directly estimating the unknown mean vector µ, which gives
a Õ(

p
|E||V|T ) regret bound. Our regret improves theirs by

a factor of O(
p

|E|/d) by leveraging the context information
via weighted least-squared estimator. For the classical PMC
bandit with semi-bandit feedback, [31] recently gives a lower
bound of ⌦(

p
dT ), which means our regret bound matches the

lower bound up to a factor of Õ(
p
d).

B. Regret Analysis

To prove our regret bound, we first introduce a series of key
lemmas as follows. The first lemma gives a concentration bound
of our weighted least-squared estimator ✓t in the presence of
the unknown variance, which ensures that ✓̂t is a good estimator.

Lemma 1 (Concentration of weighted least-squared esti-
mator). Let � > 0, N = (4d2K4

T
4)d so that � =⇣

1 +
p
� + 4

p
log (6TN/� · log (3TN/�))

⌘
. We have for all

t  T , with probability at least 1� �, k✓̂t � ✓⇤
k
2
Gt

 �.

Proof. See Appendix VII-A. ⌅
Similar results exist in the literature for unweighted least-

squared estimators [19], [21] and for weighted least-squared
estimators where a single arm is selected/observed in each
round. In our case, however, the weighted gram matrix Gt

may be significantly larger than an unweighted version or the

weighted version with single arm selection. To address this,
we carefully use the Freedman’s version of the Bernstein’s
inequality and apply recursion to prove a tight confidence
radius �, which is only a factor of O(logK) larger compared
to the unweighted least-squared estimator.

Building on this lemma, we claim that the UCB (resp. LCB)
values are accurate optimistic (resp. pessimistic) estimations.

Lemma 2 (Arm-level over/under-estimation). With probability

at least 1 � �, we have µt,i  µ̄t,i  µt,i + 3�k�t(i)kG�1
t

,

and µt,i �
¯
µt,i � µt,i � 3�k�t(i)kG�1

t
for all i 2 [m].

Proof. See Appendix VII-B ⌅
Given the arm-level over/under-estimation, we proceed to

relate the arm-level error to the total regret for C-PMC.

Lemma 3 (Reward and observation sensitivity). For C-

PMC with semi-bandit or probabilistic feedback, and for

any parameters µ,µ0
2 M, let � = (µ0

i � µi)i2[m], V =
(1/

p
(1� µi)µi)i2[m], and pµ,S = (pµ,S

i )i2[m], the reward
sensitivity r(S;µ0)� r(S;µ) satisfies |r(S;µ0)� r(S;µ)| p
|V|kpµ,S

� V � �k2, and the observation sensitivity
p
µ,S
i � p

µ0,S
i satisfies |p

µ0,S
i � p

µ,S
i |  kpµ,S

��k1,

Proof. See Appendix VII-C ⌅
Intuitively, the reward sensitivity bounds the reward dif-

ference by `2 norm of each arm’s over/under-estimation �
given by our VAC2UCB algorithm, and

p
|V| is to bound the

non-linearity of r(S;µ). Similarly, the observation sensitivity
bounds the observation probability difference by `1 norm
of each arm’s over/under-estimation �. Notice that � is
point-wise weighted by pµ,S in both reward and observation
sensitivity, which reduces the regret contribution from unlikely
observed arms to save a 1/pmin factor. For observation
sensitivity, � is further point-wise weighted by a variance-
related vector V , which coincides with our variance-adaptive
algorithm to improve a factor of O(K).

Finally, we can relate the total regret to the cumulative
contextual information bounded by the following lemma.

Lemma 4 (Weighted Ellipsoidal Potential). With probability

at least 1� �,
PT

t=1

P
i2⌧t

k�t(i)k2G�1
t
/V̄t,i  O(d log T ).

Proof. See Appendix VII-D. ⌅
Equipped with the above lemmas, we are ready to show the

analysis of Theorem 1 as follows.

Proof of Theorem 1. Let µ̃t be the vector whose i-
th entry is the maximizer that achieves V̄t,i, i.e.,
µ̃t,i = argmaxµ2[

¯
µt,i,µ̄t,i] µ(1 � µ), we bound the regret

Reg(T ) by Reg(T ) = E[
PT

t=1 ↵r(S
⇤
t ;µt) � r(St;µt)] 

E[
PT

t=1 ↵r(S
⇤
t ; µ̄t) � r(St;µt)]  E[

PT
t=1 r(St; µ̄t) �

r(St;µt)]  E[
PT

t=1 |r(St; µ̄t)� r(St; µ̃t)| +
|r(St;µt)� r(St; µ̃t)|], where the first inequality follows
from µ̄t,i � µt,i by Lemma 2 and the fact that r(S;µ)
is monotone regarding µ, the second inequality is by the
definition of St, the last inequality is by the triangle inequality.
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Define S̃ to be the set of arms that can be observed, i.e.,
{i 2 [m] : p

µ,S
i > 0, for any µ 2 M}. Now Let x̃t =

(|µ̄t,i � µ̃t,i| /
p
V̄t,i)i2S̃t

, xt = (|µt,i � µ̃t,i| /
p
V̄t,i)i2S̃t

,
x̄t = (

��µ̄t,i �
¯
µt,i

�� /
p

V̄t,i)i2S̃t
we can bound term

E[
P

t2[T ] |r(St; µ̄t)� r(St; µ̃t)|] 
p
|V|E[

PT
t=1 ||p

µ̃t,St �

x̃t||2 

p
|V|E[

PT
t=1 ||p

µt,St � x̃t||2 + ||(pµ̃t,St �

pµt,St)� x̃t||2] 
p

|V|E[
PT

t=1 ||p
µt,St � x̃t||2 + ||pµt,St �

xt||1||x̃t||2] 

p
|V|E[(T

PT
t=1

P
i2S̃t

p
µt,St
i x̄

2
t,i)

1/2 +

((K + 1)|V|/pmin)1/2
PT

t=1

P
i2S̃t

p
µt,St
i x̄

2
t,i] 

(|V|TE[
PT

t=1

P
i2⌧t

x̄
2
t,i])

1/2 + C0E[
PT

t=1

P
i2⌧t

x̄
2
t,i] 

O(d
p
|V|T log T + C0d

2 log2 T ) = Õ(d
p

|V|T ), where
the first inequality follows from reward sensitivity in
Lemma 3, the second inequality is by triangle inequality,
the third inequality is by applying observation sensitivity in
Lemma 3, fourth inequality follows from Cauchy-Schwarz
inequality for the first term over T , and Cauchy-Schwarz
inequality for the second term over i, incorporating the facts
that p

µ̃t,St
i � pmin, x̃t,i  x̄t,i, and |S̃t|  (K + 1)|V|,

the fifth inequality follows from Jensen’s inequality,
E[pµt,St

i | Ht] = E[I{i 2 ⌧t} | Ht], and letting constant
C0 = ((K + 1)|V|2/pmin)1/2, and the last inequality follows
from

PT
t=1

P
i2⌧t

x̄
2
t,i 

PT
t=1

P
i2⌧t

9�2
k�t(i)k2G�1

t
/V̄t,i 

O(d2 log2 T ) by Lemma 2 and Lemma 4. For term
E[
PT

t=1 |r(St;µt)� r(St; µ̃t)|], we can bound it similarly by
Õ(d

p
|V|T ) as above, which concludes the proof. ⌅

V. APPLICATIONS FOR C-PMC
We consider two representative applications to validate

the effectiveness of our proposed method: 1) context-aware
mobile crowdsensing and 2) context-aware and user-targeted
content delivery. We compare the regret of our VAC2UCB
algorithm with three baselines: VACUCB [12], the state-
of-the-art variance-adaptive algorithm for PMC-G bandits;
C3UCB [21], the state-of-the-art contextual combinatorial
bandit algorithm that is not variance-adaptive; and ✏-greedy,
which chooses a random action with fixed probability ✏ for
exploration and otherwise greedily chooses the empirically
optimal action.

A. Context-Aware Mobile Crowdsensing

1) Problem Description: In recent years, the rapid growth
of mobile devices such as smartphones and wearable devices,
which are equipped with powerful built-in sensors like cameras,
microphones, accelerometers, has given rise to the concept of
mobile crowdsensing (MCS) [3]–[5]. MCS enables the collec-
tion and analysis of sensing data from physical environments
with the active participation of mobile users. This paradigm
offers both opportunities and challenges. On one hand, MCS
facilitates large-scale sensing projects by recruiting a large
group of individuals who can collectively utilize their devices
to cover various locations as they move through an area [3].
On the other hand, the quality of the collected data can vary
across different participants and locations due to differences
in participants’ movement trajectories and variations in device
manufacturing quality [32].

A recent study by Liu et al. [5] highlights the close
relationship between the MCS data quality and various sensing
contexts, including hardware contexts (e.g., phone brand, sensor
models, sensor calibration level), human behavior contexts
(e.g., smartphone holding position, human movement during
sensing), and geometric contexts (e.g., location, indoor/outdoor).
Motivated by this finding, we propose the context-aware
mobile crowdsensing (C-MCS) problem: taking into account
the available user and geometric contexts, how should the
task organizer strategically select a group of individuals to
maximize the collection of high-quality data from different
locations in a city, .

The C-MCS problem can be formulated within the C-PMC
model. We consider a bipartite graph G(U ,V, E), where U

represents the set of candidate participants, V denotes the set of
locations in the city, and E models the data collection process.
At each time t, the task organizer can observe contextual
information ct, which captures the hardware and human
behavior contexts for each candidate participant, as well as the
geometric contexts for each target location. The objective of
C-MCS is to select at most K participants (with K determined
based on a recruitment budget) to perform the sensing task.
Each selected participant u 2 St independently uploads sensor
data at location v 2 V . This upload is modeled as a Bernoulli
random variable Xt,(u,v) 2 0, 1, with a probability µt,(u,v) that
the data collected by participant u at location v is valid and
can be used to cover location v. In this formulation, the arms
correspond to the edges in E , and given the feature vector
�t((u, v)) of each user-location pair (u, v), the probability
is modeled as µt,(u,v) = h✓⇤

,�t((u, v))i, where ✓⇤
2 Rd

represents the unknown parameter. The task organizer receives
semi-bandit feedback, observing whether the uploaded data
is valid or not for the pair (u, v) given that u 2 St. The
observation probability is denoted as p

µt,St

(u,v) = 1 if u 2 St,
and 0 otherwise. The reward is defined as the weighted
total number of locations covered with valid information:
r(S;µt) =

P
v2V µt,v

�
1�

Q
u2S(1� µt,(u,v))

�
, where the

known weight µt,v represents the importance of covering
location v in the crowdsensing task. Busy areas, for instance,
may have higher sensing importance as their environmental
conditions impact more people.

2) Performance Evaluation: We simulate the C-MCS
problem using complete bipartite graphs with |U| = 40
candidate nodes (participants) and |V| = 10 target nodes
(locations in the city). We first choose K = 5 (number of
chosen participants) with dimension d = 10, and generate
µt,(u,v) = h✓⇤

,�t((u, v))i, where each dimension of the
feature vector �t((u, v))i and ✓

⇤
i are sampled from uniform

distribution U(0, 0.15) and U(0, 0.5) for i 2 [d], respectively.
The importance weights µt,v are sampled from the uniform
distribution U(0, 0.5) and known to the task organizer. Fig. 2a
shows the cumulative regrets of algorithms for 20000 rounds,
VAC2UCB achieves 96%, 82% and 25% less regret than
the VACUCB, ✏-greedy (where we choose ✏ = 0.2 in all
experiments) and C3UCB algorithms. To verify how parameters
K, |V|, d, and feature distribution affect the regret, we conduct
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(a) Mobile Crowdsensing (b) Online Content Delivery
Fig. 2: Cumulative regrets in different applications. We show
the average regrets with standard deviations over 5 experiments.

a parameter study on the base case (d,K, |V|, U(0, x)) =
(10, 5, 40, U(0, 0.15)), where other parameters follow the set-
ting of Fig. 2a, and change the corresponding parameter within
d 2 {10, 30, 50}, K 2 {10, 30, 50}, |V| 2 {10, 100, 1000},
x 2 {0.05, 0.10, 0.15}, respectively. For parameter K in
Fig. 3a, the regret of our algorithm changes mildly as K

increases, consistent with our regret bound in Theorem 1 that
is independent of K. For parameter |V| in Fig. 3b, the regret
decreases as |V| increases, which contradicts our (worst-case)
regret bound. The reason is that in the average case, it may
be easier to find the optimal action with a large number of
target nodes |V|, causing less regret. For parameter d in Fig. 3c,
the regret increases almost linearly, consistent with our theory.
Fig. 3d shows with the decrease of x, the improvement over
C3UCB increases from 25% to 51%. The reason is that with
small x, the variance is smaller, and each data is re-weighted
with larger weights, making our variance-adaptive algorithm
learn faster and incur much less regret. Compared with the most
competitive algorithm C3UCB, our VAC2UCB consistently
outperforms C3UCB algorithm by at least 11%, 25%, 12%,
and 25% less regret for varying K, |V|, d, x, respectively.

B. Context-Aware and User-Targeted Content Delivery

1) Problem Description: Content delivery network (CDN)
is a network of distributed servers strategically placed across
various locations, which widely appears in web services such
as video streaming, software downloading, and web loading [1],
[33]. Unlike traditional methods that rely on a central server,
CDNs replicate and cache content on multiple servers, enabling
users to access data from servers that are physically closer to
them. This approach improves delivery speed and reliability,
resulting in a better user experience.

Context-aware and user-targeted CDN takes a step further by
prioritizing service based on user preferences and dynamically
adapting the content delivery based on users’ network capabil-
ities [34], [35]. Our framework aims to help content owners
(e.g., media companies or e-commerce vendors) to select a set
of servers to enhance the user experience by delivering content
more effectively, reducing latency, and providing content that
is most relevant and engaging for each user.

The above application scenario fits naturally into our C-PMC
problem with a bipartite graph G(U ,V, E), where U models the
set of candidate servers, V are the end users, and E models the
user-server interactions as follows. At each time slot t, the agent

(or the content owner) aims to select St ✓ U servers that can
cache the t-th content and deliver the content to users through
the CDN network. The number of selected servers at each
round is constrained by K, as the maintenance costs of each
server and the content owner’s budget are considered. Before
making the decision, the content owner collects contextual
information ct, which includes users’ demographic information
(gender, age, location, etc.) and network conditions (network
delay, bandwidth, jitter, etc.) between each server and user. The
selected servers u 2 St then independently deliver contents for
each user v 2 V with unknown success probability µt,(u,v),
depending on varying network condition [36]. By “success,”
we mean the content is delivered in a timely and high-quality
manner, which can be modeled by a Bernoulli random variable
Xt,(u,v) 2 {0, 1}, with the mean µt,(u,v) = h✓⇤

1 ,�t((u, v))i,
where ✓⇤

1 is the unknown parameter and �t is the feature
mapping function given context ct. For user-targeted CDN, we
use the quality of service (QoS) scores as features. In particular,
for each (u, v) 2 E , the feature is a d1 = 4 dimensional score
vector �t((u, v)) = [L, J,D,B], where L, J,D,B are scores
determined by packet loss, jitter, packet delay, and bandwidth
between server u and user v. Specifically, h✓⇤

1 ,�t((u, v))i is
a weighted combination of above four QoS scores.

We assume that each user v attempts to preload content
from the selected servers to their device [37]. We use a
Bernoulli random variable with unknown mean µt,v to represent
whether the preloaded content is ultimately consumed (e.g.,
video is viewed) by the user. To model users’ preference for
the contents, we use �t(v) to map a d2-dimensional feature
vector related to users’ demographic information (gender, age,
location, etc.). Similarly, the mean µt,v is represented as
µt,v = h✓⇤

2 ,�t(v)i, where ✓⇤
2 2 Rd2 is the unknown preference

vector modeling user-content interaction. In this formulation,
we can see that arms correspond to the success probability
µt,(u,v) for (u, v) 2 E and the consuming probability µt,v

for users v 2 V . The question is how to select K mirror
servers to maximize the total number of users that consume
the contents with unknown success rates and consuming
probabilities. A good server selection policy should prioritize
successful delivery to users more likely to consume the content.
The underlying parameter is now ✓⇤ = [✓⇤

1 ,✓
⇤
2 ] 2 Rd1+d2 .

As for the feedback, the content owner can observe whether
the contents are successfully delivered from the selected servers,
i.e., the values of Xt,(u,v) for u 2 St and v 2 V . This
feedback is known as semi-bandit feedback, and the observation
probability p

µt,St

(u,v) equals 1 if u 2 St and 0 otherwise.
Additionally, if a user v successfully receives the content,
the content owner can observe whether the user consumes the
content, i.e., the value of Xt,v is observed if 9v s.t. Xu,v = 1.
This feedback is called probabilistic feedback because it
depends on other random outcomes, and the observation
probability is given by p

µt,St
v = 1 �

Q
u2St

(1 � µt,(u,v)).
The expected reward is essentially Eq. (2) and the agent’s goal
is to minimize the total regrets in Eq. (3).

2) Performance Evaluation: For the user-targeted online
content delivery experiment, we consider 10 candidate server
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(a) Varying K (b) Varying |V| (c) Varying d (d) Varying distribution U(0, x)
Fig. 3: Total regrets after 20000 rounds in different settings for context-aware mobile crowdsensing.

locations from the point-of-presence (POP) locations of Mi-
crosoft Azure CDN in North America2. We assume the
users are distributed in 10 POP locations. For the feature
vector of network condition �t((u, v)) 2 Rd1 , we extract a
d1 = 4 dimensional QoS score vector, regarding network delay,
jitter, bandwidth, and package loss. The network delay and
jitter are collected from real network testing results between
user u’s location and server v’s location3. The bandwidth
and package loss are sampled from uniform distribution
U(0.9Mbps, 3Mbps) and U(0%, 1%). To compute the score
�t(u, v), we use function max((200 � delay)/200, 0) and
max((10 � jitter)/10, 0) to normalize delay and jitter, band-
width and package loss are linearly normalized to (0, 1) by
dividing by the maximum value. For the parameter ✓⇤

1 , we
extract the relative importance degree of the four parameters
above to model ✓⇤

1 = [0.149, 0.151, 0.111, 0.598] as suggested
by [38]. To extract users’ preference for the contents, we use
the MovieLens-1M dataset, which contains 1 million ratings
from 6000 users on 4000 movies.4 Using a rank-d singular
value decomposition (SVD) with d = 10, we learn a feature
mapping �(v) from users’ rating to the probability that a
uniformly random movie is rated by the user v more than
three stars (indicating the user v likes the movie). This gives a
preference distribution of user v for a uniformly random movie,
i.e., µv = h✓⇤

2 ,�(v)i. In each round t, since users randomly
arrive to be served, both a content (movie) and 10 users at
10 user locations are sampled uniformly at random in our
experiments. Fig.2b shows the cumulative regrets of different
algorithms for 20000 rounds. VAC2UCB achieves 99%, 99%
and 77% less regret than VACUCB, ✏-Greedy and C3UCB.

VI. CONCLUSION

In this paper, we propose the first context-aware PMC
bandit model which can incorporate time-varying contextual
information. We devise a variance-adaptive online learning
algorithm and conduct rigorous analysis to show strictly better
regrets. Experiments validate that our algorithm can achieve at
least 11% and 77% improvement on mobile crowdsensing and
content delivery applications, respectively. For future directions,
it would be interesting to generalize the linear structure by
considering neural network structures [39] or model mis-
specifications [40].

2https://docs.microsoft.com/en-us/azure/cdn/cdn-pop-locations
3https://wondernetwork.com/pings
4https://grouplens.org/datasets/movielens/1m/

VII. APPENDIX

A. Proof of Lemma 1

Recall that for t � 1, Xt,i is a Bernoulli random
variable with mean µt,i = h✓

⇤
,�t(i)i. We can rewrite

Xt,i = µt,i + ⌘t,i, where noise ⌘t,i 2 [�1, 1], its mean
E[⌘t,i | Ft�1] = 0, and its variance Var[⌘t,i | Ft�1] =
µt,i(1� µt,i), where filtration Ft�1 = Ht

S
St. Let us define

⇣t =
P

s<t

P
i2⌧s

⌘s,i�t(i)/V̄s,i.

Definition 1. We define failure events F0 ✓ F1 ✓

... ✓ FT , be a sequence of events by Ft = {9s 

t such that k⇣skGs +
p
� � �}, where � = 1 +

p
� +

4
p

log ((6TN/�) log(3TN/�)) and N = (4d2K4
T

4)d.

If ¬Ft holds, then by the definition of ✓̂t,Gt, ⇣t and
Xt,i, k✓̂t � ✓⇤

kGt = kG�1
t ⇣t � �G�1

t ✓⇤
kGt  k⇣tkG�1

t
+

�k✓⇤
kG�1

t
 � �

p
� +

p
� = �, which concludes Lemma 1.

To prove Lemma 1, we only need to bound the probability
of the failure events Ft, which for any t = 1, ..., T ,

Lemma 5. Pr
⇥
k⇣tkGt +

p
� � � and ¬Ft�1

⇤
 �/T .

Before we prove Lemma 5, we need following lemmas.

Lemma 6. For any s < t, k�s(i)kG�1
t
/V̄s,i 

k�s(i)kG�1
s
/V̄s,i, and if ¬Ft�1 holds and V̄s,i < 1/4,

k�s(i)kG�1
s
/V̄s,i  2/�  1 for any i 2 [m].

Proof. The first inequality is by Gt � Gs. For the second
inequality, when ¬Ft�1 holds, k✓⇤

� ✓̂skGs  �, and since
V̄s,i < 1/4, it follows from the definition of V̄s,i that at
least one of the following is true: (a). V̄s,i � (h�s(i), ✓̂s +
2�k�s(i)kG�1

s
i)/2 � �k�s(i)kG�1

s
/2, (b). V̄s,i � (1 �

h�s(i), ✓̂s + 2�k�s(i)kG�1
s
i)/2 � �k�s(i)kG�1

s
/2. ⌅

Lemma 7. If ¬Ft, then (1). k�t(i)k22/V̄t,i  4dKt, (2).

k�t(i)k1/V̄t,i  4dKt, (3). k⇣t+1k1  2dK2(t+ 1)2.

Proof. For (1), if V̄t,i = 1/4, the inequality trivially holds
since k�t(i)k  1. Consider V̄t,i < 1/4, and �max be the max-
imum eigenvalue of Gt. Then, it holds that k�t(i)k22/V̄t,i 

k�t(i)k22/(�k�t(i)kG�1
t
)  k�t(i)k2/k�t(i)kG�1

t
=

kG1/2
t G�1/2

t �t(i)k2/k�t(i)kG�1
t


p
�max, where the first

inequality follows from Lemma 6, the second inequality is by
� � 1, k�t(i)k  1.

Now Assume k�s(i)k22/V̄s,i  4s for s < t, which
always holds for t = 1. By reduction, we consider
round t, it holds that k�t(i)k22/V̄t,i 

p
�max 
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p
trace(Gt) =

q
�d+

Pt�1
s=1

P
i2⌧s

k�s(i)k22/V̄s,i q
Kd+

Pt�1
s=1 4dK

2s 

p
d(K + 2K2t(t� 1))  4dKt,

where the first inequality follows from the analysis in the
last paragraph, the third inequality follows from reduction over
s < t, and the last inequality is by math calculation.

For (2), k�t(i)k1/V̄t,i 
p
dk�t(i)k2/V̄t,i 

p
dk�t(i)k2/(�k�t(i)kG�1

t
)  k�t(i)k2/k�t(i)kG�1

t
=

kG1/2
t G�1/2

t �t(i)k2/k�t(i)kG�1
t


p
�max  4dKt, where

the first inequality uses Cauchy-Schwarz, the second inequality
uses � �

p
d, and the rest follows from the proof of (1).

For (3), k⇣tk1 = k
P

s<t

P
i2⌧s

⌘s,i�s(i)/V̄s,ik1 P
s<t

P
i2⌧s

k�s(i)/V̄s,ik1 
P

s<t

P
i2⌧s

4dKt  2dK2
t
2,

where the first inequality follows from ⌘s,i 2 [�1, 1], the
second inequality follows from (1). ⌅

Proof of Lemma 5. Let v 2 Rd and define
Vs,i,v = Var[⌘s,i | Fs�1]h�s(i),vi2/V̄ 2

s,i if V̄s,i < 1/4,
and Vs,i,v = h�s(i),vi2/V̄s,i otherwise. Let
Rv = maxs<t,i2⌧s{h�s(i),vi/V̄s,i : V̄s,i < 1/4}.

By applying the Theorem 9 in [41], which is essentially a
modification of the Freedman’s version of the Bernstein’s in-
equality [42], [43], with probability at least 1��/T , it holds that
h⇣t,vi =

P
s<t

P
i2⌧s

⌘s,ih�s(i),vi/V̄s,i  2(Rv + 1)/3 ·

log(1/�v) +
q

2(1 +
P

s<t

P
i2⌧s

Vs,i,v) log(1/�v) where
�v = 3�/(T (1 +Rv)2(1 +

P
s<t

P
i2⌧s

Vs,i,v)2).
Since v could be a random variable, we use the cover-

ing argument trick (Chap.20, [11]) to handle v. Specif-
ically, we define the covering set ⇤ = {j · " : j =
�C/",�C/" + 1, ..., C/" � 1, C/"}

d, with size N = |⇤| =
(2C/")d and parameters C, " will be determined shortly after.
By applying union bound on, we have with probability
at least 1 � � that h⇣t,vi  2(Rv + 1)/3 · log(N/�v) +q

2(1 +
P

s<t

P
i2⌧s

Vs,i,v) log(N/�v) for all v 2 ⇤.

Now we can set v = G�1
t ⇣t, and it follows from

Lemma 7 that kvk1  k⇣tk1  2dK2
t
2 , C. Based on our

construction of the covering set ⇤, there exists v0
2 ⇤ with

v0
 v, and kv0

� vk1  ", such that k⇣tk2G�1
t

= h⇣t,vi 

k⇣tk1" + h⇣t,v0
i  k⇣tk1" + 2(Rv + 1)/3 · log(N/�v) +q

2(1 +
P

s<t

P
i2⌧s

Vs,i,v) log(N/�v)  k⇣tk1" +

2(Rv + 1)/3 · log(N/�v) +
q

2(1 + k⇣tk2G�1
t

) log(N/�v),
where the second inequality uses the fact that
Rv0  Rv, Vs,i,v0  Vs,i,v, 1/�v0  1/�v for any v0

 v,
the third inequality follows from the following derivation,P

s<t

P
i2⌧s

Vs,i,v 
P

s<t

P
i2⌧s

h�s(i),vi2/V̄s,i =P
s<t

P
i2⌧s

(G�1
t ⇣t)>�s(i)�s(i)>G

�1
t ⇣t/V̄s,i =

(G�1
t ⇣t)>(

P
s<t

P
i2⌧s

�s(i)�s(i)>/V̄s,i)G
�1
t ⇣t 

(G�1
t ⇣t)>Gt(G

�1
t ⇣t) = k⇣tk2G�1

t
, where the first inequality

follows from ¬Fs�1 which implies k✓⇤
� ✓̂skGs  � for

s < t and thus V̄t,i � Var[⌘s,i | Fs�1], the second inequality
follows from

P
s<t

P
i2⌧s

�s(i)�s(i)>/V̄s,i < Gt.
Now we set " = 1/C = 1/(2K2

t
2
d), we

have k⇣tk2G�1
t

 k⇣tk1" + 2(Rv + 1)/3 · log(N/�v) +

q
2(1 + k⇣tk2G�1

t

) log(N/�v)  C" + 2(2k⇣tkG�1
t
/� +

1)/3 · log(N/�v) +
q
2(1 + k⇣tk2G�1

t

) log(N/�v)  1 +

2 log(N/�v)+
q
2(1 + k⇣tk2G�1

t

) log(N/�v), where the second
inequality is by Rv  2k⇣tkG�1

t
/� under ¬Ft�1, the last

inequality holds since � is an upper bound of k⇣tkG�1
t

.
By rearranging and simplifying the above derivation, we

have k⇣tkG�1
t

+
p
�  1 +

p
� + 4

p
log(N/�v)  1 +

p
�+4

q
log(6TN/�(1 + k⇣tk2G�1

t

)), where the last inequality

is because of �v � (3�)(T (1 + k⇣tk2G�1
t
)) from the def-

inition of �v, and
P

s<t

P
i2⌧s

Vs,i,v  k⇣tk2G�1
t

. Finally,
we solve the above equation and set � = 1 +

p
� +

4
p

log (6TN/� · log(3TN/�)), which completes reduction on
t to show Pr[k⇣tkG�1

t
+
p
� � �] � 1��/T under ¬Ft�1. ⌅

B. Proof of Lemma 2

Proof. For any i 2 [m], t 2 [T ], we have���h✓̂t,�t(i)i � h✓⇤
,�t(i)i

���=
���h✓̂t � ✓⇤

,�t(i)i
���k✓̂t �

✓⇤
kGt · k�t(i)kG�1

t
�k�t(i)kG�1

t
, where the first

inequality by Cauchy-Schwartz, the second by Lemma 1.
Now use the definition of µt,i = h✓⇤

,�t(i)i and
µ̄t,i = h✓̂t,�t(i)i+ 2�k�t(i)kG�1

t
finises the proof. ⌅

C. Proof of Lemma 3

Proof. For the reward sensitivity, it follows from Lemma 1 in
[12] by setting ⌘i = 0, ⇣i = µ

0
i�µi. For observation sensitivity,

we consider two cases: semi-bandit feedback and probabilistic
feedback. For semi-bandit feedback, it trivially holds. For
probabilistic feedback, pµ,S

v = 1�
Q

u2S(1� µ(u,v)), without
loss of generality, we assume S = {1, ...,K}, |pµ

0,S
v �p

µ,S
v | =P

i2[K] |µ
0
(u,v) � µ(u,v)|

Qi�1
j=1(1 � µ(i,v))

QK
j=i+1 µ

0
(i,v) P

i2[K] |µ
0
(u,v) � µ(u,v)|  kpµ,S

��k1. ⌅
D. Proof of Lemma 4

Proof. We begin by recursively bound the determinant of
Gt+1, det(Gt+1) = det(Gt +

P
i2⌧t

�t(i)�t(i)>/V̄t,i) =

det(Gt) · det(I +
P

i2⌧t
G

�1/2
t �t(i)(G

�1/2
t �t(i))>/V̄t,i) �

det(Gt) · (1 +
P

i2⌧t
k�t(i)k2G�1

t
/V̄t,i) � det(�I)

Qt
s=1(1 +P

i2⌧s
k�s(i)k2G�1

s
/V̄t,i). If V̄s,i = 1/4, k�s(i)k2G�1

s
/V̄s,i 

4k�s(i)k2/�min(Gs)  4/�  1/K, else if V̄s,i <

1/4, and since ¬FT , by Lemma 6, k�s(i)k2G�1
s
/V̄s,i 

1/(�
p
�)  1/�  1/(4K). Therefore, we haveP

i2⌧s
k�s(i)k2G�1

s
 1. Using the fact that 2 log(1 + x) �

x for any [0, 1], we have
P

s2t

P
i2⌧s

k�s(i)k2G�1
s
/V̄s,i 

2
Pt

s=1 log(1 +
P

i2⌧s
k�s(i)k2G�1

s
/V̄s,i) = 2 log

Qt
s=1(1 +P

i2⌧s
k�s(i)k2G�1

s
/V̄s,i)  2 log(det(Gt+1)/det(�I)) 

2 log((� +KT/d)d/�d) = 2d log(1 + 4dK2
T

2
/(�d)) 

4d log(KT ), where the second last inequality follows from
the determinant bound at the beginning of this section, the
last inequality follows from Lemma 15 of [19] by setting
L = k�s(i)k2/V̄s,i  4dKs (from Lemma 7). ⌅
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